

The use of traffic <u>flow</u> models for traffic <u>emissions</u> calculations

Cristina Pozzi - 6-10-2023. Webinar : «Claves para el éxito en la ejecución de los nuevos proyectos de zonas de bajas emisiones según RD 1052/2022 »

Traffic emissions calculation methodologies

Vehicle emission models usage in Europe

COPERT is the EU standard vehicle emissions calculator. It uses vehicle population, mileage, speed and other data such as ambient temperature and calculates emissions and energy consumption for a specific country or region.

COPERT SW calculates emissions at a national, regional or local scale, and for annual to daily estimates

mission types:

- thermal stabilised engine operation ('hot' emissions);
- the warming-up phase ('cold start' emissions);
- non-exhaust emissions (from fuel evaporation, tyre and brake wear emissions).

ISPRA

🚫 ISPRA

Environmental

Protection Agency Italy

Road traffic emissions model

Mileages and speeds

• Geographical: interfaced with GIS systems

- Space and time disaggregation
- Lumping of chemicals
- Linux version for real-time modelling chains
- Interfaced with dispersion models

- Software: calculates aggregated emissions for a specific country or region

Road traffic modelling scheme

Dispersion model application at urban level – TREFIC+MSS

Road traffic flows model

CarUSO - "**Car U**sage **S**ystem **O**ptimizator" : light, speedy, flexible and complete road traffic model very suited to real time applications

CarUSO: Road traffic flows model

THEORETICAL Bases

- 1. "Wardrop's equilibrium principle": flows are routed along paths with minimum "effective cost"
- 2. "Willumsen's entropy principle": the best O/D matrix maximizes "dispersion"

THE COSTS OF ROADS are generally related to travel times and thus speeds, thus to the functional characteristics of the roads and the flows on them: the speed-flow relation graph (v=speed; F/C=flow to capacity ratio)

Assignment models work **minimizing the travelling cost** between Origin/Destination zones.

Constraints	traffic data on some arcs (initial O/D matrix)	
Variables	OD(i,j) – OD matrix elements	
Assignment	Multiple paths	

TRAFFIC MODELS for mobility planning

LEZ and ZEZ low- and zero-emission zones : deployed by city governments to mitigate air pollution, congestion, and carbon emissions from road traffic.

... mitigate air pollution

TRAFFIC MODELS for mobility planning

... mitigate congestion

20th CENTURY: HOW MANY CARS CAN WE MOVE DOWN THE STREET?

Model support policy makers in SCENARIO comparison

COST function design	Money (ticket, fee, fuel, parking)
	Social - health
	Time (tpl rapid transit)
	Environmental

THANK YOU FOR YOUR ATTENTION

Cristina Pozzi cristina.pozzi@suez.com

